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ABSTRACT 

 
Attractive properties of Sentinel-2 MSI for monitoring 

vegetation dynamics include its reasonable spatial 

resolution, spectral sampling and revisit capabilities. 

But the large number of factors that affect vegetation 

reflectance spectra and the impact of clouds mean that 

the likely uncertainties when monitoring crops and 

forest resources are likely still relative high. One way of 

improving on this is to use data assimilation with optical 

radiative transfer models as observation operators. This 

allows for fuller use of the measured signals (rather than 

e.g. vegetation indices using only a few channels), for 

better use of multi-temporal data and ultimately reduced 

uncertainties in vegetation and soil state. In this paper, 

we discuss state estimation approaches and data 

assimilation in particular. We present an Earth 

Observation Data Assimilation System (EO-LDAS) 

which is an implementation of such ideas. EO-LDAS, 

developed under ESA funding, uses the semi-discrete 

radiative transfer model as observation operator and a 

temporal regularisation constraint as dynamic model 

and allows state variables to be solved at a daily time 

step with associated uncertainty. As well as temporal 

interpolation, the system provides a reduction in 

uncertainty of around 2 over a scenario MSI data alone. 

The outlook for the application of such methods is also 

discussed. 

 

1. INTRODUCTION 

 

1.1. The Remote Sensing Problem 

 

The ‘remote sensing problem’ involves the estimation 

of information from remote, (generally) radiometric 

measurements. There have been many approaches taken 

to this, but at heart, it is an optimal estimation problem. 

We can interpret this as some representation of state 

that we wish to infer from our measurements. This state 

can be viewed in a Bayesian context [1] as some joint 

probability density function (PDF), which might 

usefully in many circumstances be simplified to a 

multivariate Gaussian distribution that we can describe 

with a mean vector       and a variance/covariance 

matrix      . We can also describe our observations in 

this same way, e.g. for assumed Gaussian distributions 

as a mean vector   with associated uncertainty     . 

The remote sensing problem then is to provide an 

estimate of       and       given   and     . To solve 

this, we will need an operator to map between these 

spaces, which we can phrase as an observation operator 

 ̂   ( ) , where  ( )  provides an estimate of   for 

given  ,  ̂ . There will typically be some uncertainty 

associated with this mapping, which, if assumed 

Gaussian we can represent by   . Often in remote 

sensing we have seen the remote sensing problem as 

simply trying to find and apply the inverse of  ( ) , 
 ̂     ( ) [2], but in a more rigorously approach we 

recognise that this needs to take account of the various 

uncertainties. 

 

In this paper, we consider the particular problem of 

trying to estimate the state variables of a vegetation 

canopy (leaf area index (LAI), leaf chlorophyll 

concentration etc.) from optical multispectral 

measurements such as those available from the Sentinel-

2 MSI sensor [3]. In such a case  ( )  could be a 

radiative transfer model that predicts top of canopy or 

top of atmosphere radiance measurements [4]. 

Alternatively, it could simply be a mapping via a 

vegetation index [5]. 

 

In trying to tackle this problem, we often find that there 

is insufficient information in the observations to 

strongly affect our estimate of some or all of the state 

vector. Alternatively we might find that there are many 

versions of the state vector that are capable of 

reproducing the observations. We can say then that the  

remote sensing problem is often ill conditioned. There 

have been various responses to this. One of the most 
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commonly used in mapping vegetation properties has 

been to attempt to transform the observations (e.g. 

through a vegetation index (VI)) to maximise the 

sensitivity of the transformed variable to a single 

element of   (e.g. LAI) [5]. In practice, many such 

transformations (such as the Normalised Difference 

Vegetation Index) are essentially measurements of the 

depth or relative depth of an absorption feature and are 

typically useful in obtaining first order estimates of the 

  ate variables of interest. Despite their popularity, VIs 

suffer from a number of known failings [6].  

 

1.2. Optimal estimation 

 

As indicated above, an alternative approach is to treat 

the operator  ( )  as a radiative transfer (RT) model 

based on an understanding of the physics of radiation 

scattering, but since such models may typically have 

more than ten parameters we tend to hit the problem of 

ill conditioning if we attempt to solve for all of the state 

vector. The pragmatic response to this has been to 

assume that some of the elements in the state vector are 

known and to solve for a limited subset. An example of 

this is the MODIS LAI/fAPAR product [7] that uses a 

land cover-based LUT from RT modelling. All state 

variables other than LAI are assumed fixed (i.e. known) 

in the modelling, although their values (and assumptions 

about vegetation structural arrangement) vary with land 

cover class. In a Bayesian context we can call this a 

form of a priori constraint: the algorithm developers 

have a belief that (non target) state variables such as leaf 

reflectance and transmittance realistically only vary 

within certain limits, so they choose to fix these to some 

average of their expectation. Properly, there should be 

some uncertainty associated with these fixed values. In 

that case, we can take this assumed prior knowledge as 

a vector        with associated (Gaussian here) 

uncertainty       . We can illustrate the simplest case of 

this form of constraint by assuming a toy example 

where the observation operator to be an Identity 

operator  ( )  so that  ̂   . We suppose a two-

dimensional state vector with a prior estimate of state 

represented by        (       )  and        

((         ) (         ))  and an observation   
(         )  with uncertainty 

     ((         ) (         )). This is illustrated in 

figure 1, panels (a) and (b). It is trivial to show that in 

this case the combined PDF is obtained by: 
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      (      
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Eq. 1 is of course just textbook statistics: if we interpret 

       as simply another (independent) observation of  , 

then we see immediately that this expresses that we 

combine two observations by taking an uncertainty-

weighted mean. In the most trivial case where the 

uncertainties are the same, the best estimate of   is the 

mean and the posterior variance/covariance becomes 

reduced by a factor of  √ ⁄ . We present this here 

however because it should be a useful and rather 

intuitive starting point for most readers and to use it 

introduce a framework for solving the remote sensing 

problem by combining PDFs which is Bayes theorem: 

 

 (   )   ( ) (   )  ( )⁄  
 

 
(a) Prior 

estimate 

 
(b) Observation 

 
(c) Posterior 

estimate 

Figure 1. Illustration of combining PDFs. 

 

We can now state the result of our state estimation (our 

solution to the remote sensing problem) as a conditional 

probability of state   given the information  ,  (   ). 
The importance of this is perhaps better illustrated by 

writing  (   )   ( ) (   )  since the term  ( ) 
above simply acts to normalise the PDF integral. This 

then is the theorem that tells us to combine PDFs, we 

multiply them.  

 

The Gaussian PDF is an exponential of a term  ( ) , 

   (  ( )) where e.g. for        and  : 
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Where   denotes the transpose operation. So Bayes 

theorem tells us that to combine Gaussian PDFs we 

multiply exponentials, giving the posterior as a 

Gaussian distribution that is the sum of the  ( ) terms, 

so developing the above example and writing: 

 

 (     )   (      )   ( ) 

 

and the maximum likelihood estimate of       is given 

by the minimum of  (     ). We recognise  (     ) as 

a cost function and note that Bayes theorem tells us that 

it is simply a sum of cost functions providing a set of 

constraints. To solve for the minimum of this, we need 

to find where the derivative   (     )  (the Jacobian), 

which is the sum of the derivatives of the individual cost 

functions, is zero. The estimate of the posterior 

uncertainty is given by the curvature of the cost function 

at its minimum, which is the second order derivative 



of  (     ), the Hessian,    (     ), which is the sum of 

the Hessians for the individual cost functions. 

 

To illustrate this, we take the observation operator to be 

the canopy RT model of [8] with a spectral function for 

leaf reflectance and transmittance that is an 

approximation to the PROSPECT model [9] [10] with 

the soil spectrum defined by the basis functions of [11] 

as described in [12]. This model of canopy state has 13 

parameters for each location, covering LAI, soil 

biochemistry etc., although only 7 or 8 of these may be 

accessible depending on spectral and angular sampling 

from typical Earth Observation (EO) instruments. We 

will deal with Gaussian distributions of error here, so 

apply exponential transformations to appropriate 

variables (LAI and leaf biochemistry concentrations) to 

approximately linearise the sensitivity. For 

observations, we take a MERIS top of canopy spectrum 

over a field site in Germany. We apply a constraint 

using       , but with large uncertainty. This helps to 

condition the solution, but will not strongly influence it. 

We then solve for the minimum of the combined cost 

function for observations and prior for 7 of the model 

parameters. Table 1. shows the prior and posterior 

model state vectors, along with the associated standard 

deviations. For a full description of the model 

parameters and units see [12], but we can recognise for 

instance that the posterior estimate of LAI is 

−2ln (    )       here and that 95% confidence 

intervals on this would give an upper limit of 

    (              )       and a lower one of 

    (              )       which equates to 2/3 

of the signal and seems quite a large uncertainty. 

However, if we equate this to an effective standard 

deviation in LAI of 0.11 this would compare very 

favourably to errors in current LAI products if this were 

a true estimate of error [13] so we might consider this a 

reasonable result: even without fixing the non target 

state vector elements we are able to provide a viable 

estimate of all (sensitive) parameters from the 

‘inversion’ of an RT model with only weak prior 

constraints. 

 

Fig. 2a. shows the reflectance data used here in the 15 

MERIS bands and we can see that this ‘viable’ result is 

obtained by the model fitting well to the observations.. 

If we then try to use this estimate of state to predict 

what we would see from another sensor (MODIS here) 

(Fig. 2b) at a different set of view zenith and azimuth 

angles (around 40
o
 view zenith here, rather than the near 

nadir MERIS observation) we see that the predictive 

power of this model and state vector set is rather poor. It 

is unsurprising that this is the case outside of the 

wavelength range of the MERIS data, where leaf and 

soil water content (not solved from the MERIS data). 

This poor performance might be due to errors in the 

model assumptions or scale differences, but this is 

unlikely as the observations are of a large wheat field 

that ought to reasonably correspond to the model 

assumptions. The most likely reason then is simply the 

large uncertainties in the state vector estimate, 

compounded by correlation effects in the parameters.  

 

 
(a)  

(b) 

Figure 2. (a) MERIS observation (ToC reflectance) as a 

function of wavelength (nm) in red/blue and posterior 

estimate of reflectance (green); (b) Prediction of 

MODIS reflectance (at two different view angles) for the 

same day/location from the MERIS-estimated state 

vector (observations in blue here, predictions in green). 

 
                           

 
    

  
0.95 1.00 0.72 0.04 

 
   
    

0.10 1.00 0.78 0.04 

Scen. 0.00 1.00 0.00 0.06 

        0.30 1.00 0.48 0.04 

N 0.90 2.50 1.75 0.28 

   0.01 4.00 1.78 0.49 

   0.01 5.00 1.39 1.02 

Table 1. Prior and posterior model state from MERIS 

 

2. DATA ASSIMILATION 

 

2.1 Context 

 

Data assimilation (DA) is a set of statistical and 

computational methods that enable the optimal merging 

of models and data. The statistical basis for it is that 

presented above (although we have limited most 

discussion here to Gaussian distributions). In essence, it 

allows us to use multiple constraints to solve the 

problem. In general, a DA system will contain: (i) a 

background (or prior) constraint, involving a PDF from 

climatology or previous DA runs; (ii) a process model, 

predicting linkages between the state vector elements in 

space and/or time; (iii) observational constraints.  

 

Early examples of DA include those used to improve 

short-term weather predictions from meteorological 

models [14]. Here observations are used to improve 

predictions of the state of the atmosphere, this being 

represented by a large number of interconnected cells in 

a 3D grid. In such applications, a ‘strong constraint’ DA 

is often used within which the physics of the 



meteorological model (which is the process model in 

this case) are assumed to be without error, with the 

uncertainty in the estimate of the atmospheric state 

coming from errors in the initial conditions. By using 

DA to update the estimate of the initial conditions, the 

forecast from that state is improved. The a priori 

estimate for the state for the next run of the assimilation 

can be provided for example from the a posteriori result 

of the previous run. Within the field of meteorology, 

along with areas of remote sensing such as atmospheric 

sounding where DA has been used for some time [15] 

there has been a development of a set of techniques for 

DA that researchers are starting to apply to a wider 

range of problems. In contrast to the strong constraint 

approach mentioned above, a weak constraint method 

considers uncertainty in the process model. Other 

examples of DA include: the work of [16] who used a 

strong constraint DA to estimate parameters of 

vegetation process model; [17][18] who coupled an LAI 

phenology model to a RT observation operator to 

estimate LAI; or various applications in remote sensing 

of hydrology (e.g. [19]). We can identify two main 

approaches to DA: (i) variational methods and (ii) 

sequential methods. 

 

2.2 Variational methods 

 

In variational methods, numerical algorithms such as 

iterative gradient descent methods are used to find the 

minimum of the combined cost function. In a sense, this 

is similar to numerical methods used for many years in 

trying to ‘invert’ optical canopy reflectance models [2], 

but significant differences are: (i) computer code for the 

Jacobian is often used, involving tangent linear or 

adjoint codes that can be developed using automatic 

differentiation tools such as TAF [20] [21] or 

TAPENADE [22] and which allow for more efficient 

solutions to the optimisation, e.g. using L-BFGS-B [23]; 

(ii) the use of a prior estimate in the DA deals with 

many of the problems of ill posedness (see e.g. [24], 

[25]); (iii) the use of a process model provides 

additional constraints on expected state vector 

behaviour in space/time which better constrains the 

solution. In a variational scheme, an estimate of all 

elements of the state vector will be sought at the same 

time, although, as in the meteorological example 

mentioned above, they can be applied sequentially to 

subsequent (e.g. time) windows. As a result, they can 

provide posterior uncertainty information relating all 

elements in the state vector. These methods can be used 

to solve very large scale problems. They are easy to 

define, but to be efficient generally require that code for 

the Jacobian is available. A drawback is that they can be 

difficult to use unless Gaussian statistics are assumed. A 

schematic of a strong constraint variational DA is 

illustrated in fig. 2. From an initial estimate of the state 

the process model   ( )  is applied to produce a 

proposed state at time  ,   . This is transformed into the 

space of the observations by  (  )  as  ̂ , and a cost 

function      built from the difference between this and 

the observations     , using the uncertainty in the 

observations (and potentially the observation operator). 

An additional constraint is developed as        that is the 

cost of the state departing from our estimate of what the 

state ought to be,        relative to the uncertainty in the 

prior. The derivatives       and         are generally 

calculated at the same time and the combined cost 

function and its derivative fed into an algorithm such as 

L-BFGS-B to attempt to find the cost function minimum 

and provide the a posteriori estimate of the state      . 

At that point, the Hessian is calculated and the posterior 

uncertainty estimated. The ‘strong constraint’ term 

refers to the process model that we assume can map the 

initial conditions       to the time/space of the 

observations. Although uncertainty in the observation 

operator can be incorporated, it is often not known. 

 
Figure 3. Strong constraint variational DA 

 
Figure 4. Weak constraint variational DA 

 

In a weak constrain system uncertainty in the process 

model is explicitly treated. This can be phrased as an 

additional constraint       . An example of this (fig. 3) 

would be to consider that   now contains a 

representation of state at all times/locations (rather than 

just the initial conditions) so that the process model now 

maps from subsets of the state vector to other subset 

(e.g. from the part of the state at a particular time/space 

to another time/space). We now treat this prediction 

from the model as an estimate of state  ̂ with associated 

uncertainty        and form the cost function        
between this and estimate and the a posteriori estimate 

that we wish to solve for. We can of course use the prior 

(background) constraint as previously, though we note 

that in this example it applies to the whole of the state 

vector at all (sampled) times/space. We can illustrate 

this with the simplest form of process model, a zero 

order process model, in which the value of state at a 

neighbouring sample (in space/time) is modelled the 

current state, i.e.  ( )    with associated uncertainty. 

This can be phrased using a (linear) differential operator 
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  so we have the expectation      with uncertainty 

      . In the simplest form of this we can assume that 

the uncertainty is constant over all time/space, so 

        
    where   is the identity operator and   is 

the inverse of the standard deviation in the model, 

which is of course a form of tolerance to the credibility 

of this model, a smoothness term on the variation of 

state, or equally the inverse of our expectation of how 

much we expect the state to change (in a mean squared 

sense) from one time/space location to another. In this 

case: 

 

       
  

 
  (   )  

 

The derivatives of this are straightforwardly calculated 

as it is a linear model:          
 (   )  and 

          
 (   ) . The matrix operator   has ones 

along the leading diagonal and -1 for the neighbouring 

state (scaled by the distance to the neighbour). There are 

various options for how this is treated at the boundaries 

of the time/space domain, such as periodicity, 

reflectivity etc. [26]. The impact of such a process 

model is to regularise, i.e. smooth the state, the degree 

of smoothness being controlled by  . Since the degree 

of smoothness desired is often not known, this must 

typically be estimated by cross validation approaches or 

by making other assumptions. [27] use such a 

regularisation approach to solve for linear kernel-driven 

BRDF parameters from MODIS data, matching the 

observational residuals (   ̂)  with the expected 

uncertainty in  . 

 

2.3 Sequential methods 

 

These include methods such as the Kalman filter and its 

variants [28] that operate at individual time /space step. 

In essence, they attempt to solve the same problem as 

the variational schemes but do so by breaking the 

problem up into small steps that converge to the same 

solution (or an approximation to it). They can be more 

flexible in dealing with non-linear effects and non-

Gaussian distributions. When applied in multiple 

directions (in space/time) these methods are often 

known as smoothers, whereas if they are used in a 

single direction (e.g. predicting forward in time) they 

are known as filters. [29] used ensemble Kalman filters 

to assimilate satellite reflectance data into a vegetation 

process model to improve carbon flux estimates. [30] 

used similar techniques to assimilate snow observations 

into a process model. [31] used the related (but more 

flexible) method of particle filtering to assimilate 

microwave temperature data into a soil moisture 

dynamics model. One advantage of these methods is 

that adjoint code is not generally required. Of note also 

are Markov Chain Monte Carlo (MCMC) methods. 

These allow for the numerical solution of the posterior, 

using variations of the Metropolis algorithm [32]. The 

main benefit is their flexibility in combining different 

distributions (the data and/or prior need not be 

Gaussian, for example) and that no assumptions on the 

nature of the posterior are made (it is perfectly plausible 

to explore multimodal posterior distributions, for 

example). The main drawback is that MCMC 

algorithms in general take a long time to explore the 

solution space,  therefore requiring many realisations of 

the dynamic model and observation operator. 

Additionally, convergence needs to be 

carefully  monitored. In [33], MCMC methods are used 

to invert MODIS surface reflectance data using a 

canopy reflectance model. 

 

A useful review article on the use of DA in estimating 

surface biogeophysical parameters is given by [34]. 

 

3. EO-LDAS 

 

3.1 The EO-LDAS prototype 

 

EO-LDAS is an ESA STSE-funded project to build a 

prototype Earth Observation Data Assimilation System 

that has recently been completed. The project is 

described in more detail in [35] and a tutorial for the use 

of the prototype software given in [36]. The software is 

soon to be released as a python package. Part of the 

motivation of the project was to build such a prototype 

tool to allow potential users to gain experience with 

using DA with EO data. The prototype software 

includes an interface to the top of canopy RT model 

described above (with associated adjoint code) which 

allow experiments such as the above MERIS and 

MODIS example to be conducted. There is also an 

interface to the 6s atmospheric code for ingesting top of 

atmosphere radiance, although this is slow as no adjoint 

is currently available. In addition, codes for linear 

kernel-driven BRDF models are included. 

 

Although full access to the code is given, the most 

straightforward way of operating the code is through 

configuration files. In these, the user can read in 

observational data and set up a series of constraints for 

the DA. These would typically include: a background 

constraint by specifying a priori estimates of the model 

state with associated uncertainty; one or more 

observational constraints (one is set up for each sensor 

being used to facilitate sensor-specific configuration); 

and a (process) model constraint. The only process 

models implemented in the prototype so far are 

regularisation methods (N
th

 order difference constraints 

such as the zero order process model mentioned above) 

although the user can code or interface to their own 

models. Examples of this might include process models 

of vegetation dynamics, e.g. to interface to carbon flux 

calculations as in [16] or [29]. However, the only 

overlap between parameters of most state-of-the-art 



vegetation dynamics models and those driving optical 

observation operators is LAI (or more precisely, the 

foliar carbon pool, which can be related to LAI), so 

even if we were to include such biogeochemistry 

models (as they are currently used) they would provide 

a constraint to only one of the terms linking to the 

observations. We would still then need to have some 

model (or make some further assumptions) regarding 

the other (7+) terms controlling reflectance to achieve 

the DA. For this reason, we have concentrated efforts at 

this stage on trying to derive a generic approach that can 

be used to estimate all state variables that affect the 

observations we are using. [29] discuss some of the 

other issues that must be considered when linking e.g. 

biogeochemical models with EO data in a DA system, 

including the need for a consistency in the assumptions 

made about the structural arrangement of vegetation in 

all models used. EO-LDAS implements a variational 

method. If the regularisation model constraint is used, 

then this is effectively a weak constraint DA system. 

Whilst this does not cover all of the approaches that 

might be used in DA it is a very useful starting point, 

particularly for users wishing to gain familiarity with 

the concepts. This is partly because it is straightforward 

to incorporate new constraints by adding new cost 

function terms as described above. The only real 

drawbacks are: (i) is that for it to be efficient, adjoint 

codes are needed if a model is non-linear; (ii) Gaussian 

statistics are assumed. This second restriction is 

somewhat mitigated against by allowing transformation 

functions to be defined for state variables (e.g. the 

exponentials given above), so a wide class of 

distributions can be used, provided they can be 

transformed by a continuous differentiable operator to a 

Gaussian. The (regularisation) process model in EO-

LDAS is defined so that it can be applied in both space 

and time, although we have only explored the temporal 

aspect of this in any detail to date.  

 

3.2 Application to MODIS data 

 

Although it can do other things, the EO-LDAS software 

then is readily set up to ingest top of canopy spectral 

directional reflectance data, e.g. for a given location 

over some time period and apply prior and 

(regularisation) model constraints to provide an 

interpretation of the data in terms of the biophysical 

parameters driving the observation operator. Although a 

full ‘validation’ of such a system is hard to achieve, 

within the EO-LDAS project a comparison of LAI 

estimated using such an approach was performed, 

driven by MODIS (500m) observations. The field data 

were collected and processed by project partners from 

FSU Jena over large agricultural crop fields in 

Germany. 

 

Fig. 5 shows envelopes of likely MODIS reflectance 

assuming the field LAI data to be true, using parameter 

ranges for the other observation operator variables taken 

from assumed prior distributions. We can see that there 

is generally quite a large range of reflectance values that 

could result from a given LAI. This is a useful first 

check before performing a DA exercise, as if 

observations are outside the envelopes (as with a few 

samples in bands 1 and 3) the DA would not be able to 

solve for the measured LAI values if these observations 

were matched closely.  

 

 
Figure 5. Panels of reflectance in MODIS wavebands as 

a function of day of year 2010 over the Gebesee site for 

a field of winter wheat. The grey envelopes show the 

domain of reflectance using field measured LAI and the 

a priori distributions of other parameters. The red 

marks indicate observed MODIS reflectance. The black 

solid line indicates the envelope mean. 

 

 
Figure 6. State estimates resulting from the EO-LDAS 

DA using MODIS data. The state for 8 parameters is 

sampled daily over a year, giving a state vector of 

around 3000 elements. Field measured LAI in red. 

 

Fig. 6 shows the state vector resulting from the DA for a 

value of   derived from generalised cross validation. 

The estimated LAI broadly matches that in the field 

data, but is clearly too ‘peaky’, probably as a result of 

over-smoothing here. Of more interest perhaps is the 

variation in the other parameters. Leaf Chlorophyll and 

water broadly matches the LAI trajectory, and there is 

an apparent decrease in leaf N (leaf structural 

complexity) with increasing LAI. The term     broadly 



corresponds to soil moisture in this experiment, which 

over the green vegetation period broadly matches the 

leaf water pattern. The leaf senescence term is high 

around day 100 which may be due to residual stubble in 

the field, but more interestingly has a strong peak soon 

after the time of maximum LAI.  

 

3.2 Synthetic experiment for Sentinel-2 MSI 

 

A set of experiments using EO-LDAS with simulated 

Sentinel-2 MSI data is described in detail in [12]. 

Temporal trajectories for the biophysical parameters are 

modelled (shown as a dotted green line in the figures 

below) and we attempt to retrieve these using synthetic 

MSI data. This is first attempted using MSI data for 

each observational day alone (akin to the use of MERIS 

data shown in Fig. 2), with results for a cloudy scenario 

with 50% of samples missing over the year shown in 

Fig. 7. When the zero-order process model is applied, 

we reduce the uncertainties by a factor of around 2 and 

also provide a continuous estimation of state. Although 

estimates of the biophysical parameters can be derived 

from the MSI data, the uncertainty (error bars show 

95% C.I.) is high. The impact of DA even with this 

simple regularisation model is to dramatically improve 

the estimates whilst mostly keeping the true value 

within the C.I.  

 

4. OUTLOOK 

 

One of the major goals of terrestrial remote sensing has 

been to quantify the properties (state) of vegetation 

canopies. We have had access to RT tools to understand 

signals and interpret data for decades, but fast and 

simple VI methods still tend to dominate the field. As 

we move into an era where we are more concerned with 

estimating both state and uncertainty, we must start to 

recognise the impact of the assumptions made in 

interpretation as part of such error budgets. This 

requires more sophisticated statistical frameworks than 

have often been used in the past. This might be seen as a 

burden to producers of EO products, but rather affords 

great opportunities for explicitly applying multiple 

constraints on our interpretations. The information we 

estimate from EO is regularly and increasingly used to 

drive models (e.g. biogeochemistry models), but these 

models themselves can often provide information to 

help constrain estimates from EO. In many 

circumstances then it makes sense to combine the 

(process) modelling with interpretation of low level EO 

data such as ToA radiance or ToC reflectance. This can 

provide better consistency, more easily track 

uncertainty, allow constraint from model expectations, 

and ultimately better test and drive the models. This sort 

of task requires DA. We must also recognise that some 

terms that affect the EO data do not overlap with 

concepts in our process models, so we must pay 

attention to empirical approaches such as regularisation 

that can fit into the DA framework when we lack 

models or understanding of process. 

 

EO-LDAS as a tool, is a start at exploring how we 

should be making better use of DA concepts in 

monitoring the land surface (and vegetation in 

particular) from EO. It can be applied practically to state 

estimation from (one or more) existing sensors, and we 

can have also demonstrated its use in exploring how we 

might improve mapping from future sensors such as 

Sentinel-2 MSI. The process models within the tool are 

limited at present, but there is plenty of scope for 

expanding this. Also, whilst interesting concepts such as 

spatial DA, which could form the basis for a multi-scale 

DA system are implemented, they have not been fully 

explored. 

 

(a)  

(b)  
Figure 7. State vector estimate from EOLDAS for 6 

biophysical parameters as a function of time derived 

from synthetic Sentinel-2 MSI data with EO-LDAS. (a) 

single date solutions; (b) regularised solutions. 
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